import { defineEventHandler, readBody } from 'h3'; // Define an interface for the expected request body (subset of AsnafProfile) interface AsnafAnalysisRequest { monthlyIncome: string; otherIncome: string; totalIncome: string; occupation: string; maritalStatus: string; dependents: Array; // Or a more specific type if you have one for dependents // Add any other fields you deem necessary for OpenAI to analyze } interface AidSuggestion { nama: string; peratusan: string; } // Define an interface for the expected OpenAI response structure (and our API response) interface AsnafAnalysisResponse { hadKifayahPercentage: string; kategoriAsnaf: string; kategoriKeluarga: string; cadanganKategori: string; statusKelayakan: string; cadanganBantuan: AidSuggestion[]; ramalanJangkaMasaPulih: string; rumusan: string; } export default defineEventHandler(async (event): Promise => { const body = await readBody(event); // --- Placeholder for Actual OpenAI API Call --- // In a real application, you would: // 1. Retrieve your OpenAI API key securely (e.g., from environment variables) const openAIApiKey = process.env.OPENAI_API_KEY; if (!openAIApiKey) { console.error('OpenAI API key not configured. Please set OPENAI_API_KEY in your .env file.'); throw createError({ statusCode: 500, statusMessage: 'OpenAI API key not configured' }); } // 2. Construct the prompt for OpenAI using the data from `body`. // IMPORTANT: Sanitize or carefully construct any data from `body` included in the prompt to prevent prompt injection. const prompt = `You are an expert Zakat administrator. Based on the following applicant data: monthlyIncome: ${body.monthlyIncome}, totalIncome: ${body.totalIncome}, occupation: ${body.occupation}, maritalStatus: ${body.maritalStatus}, dependents: ${body.dependents.length}. Return JSON with keys: hadKifayahPercentage, kategoriAsnaf, kategoriKeluarga, cadanganKategori, statusKelayakan, cadanganBantuan, ramalanJangkaMasaPulih, rumusan. For 'cadanganBantuan', provide a JSON array of objects, where each object has a 'nama' (string, name of the aid) and 'peratusan' (string, e.g., '85%', representing suitability). Suggest 2-3 most relevant aid types. Example for cadanganBantuan: [{"nama": "Bantuan Kewangan Bulanan", "peratusan": "90%"}, {"nama": "Bantuan Makanan Asas", "peratusan": "75%"}]. Full JSON Example: {"hadKifayahPercentage": "75%", ..., "cadanganBantuan": [{"nama": "Bantuan Kewangan Bulanan", "peratusan": "90%"}], ...}`; // Adjust the prompt to be more detailed and specific to your needs and desired JSON output structure. // 3. Make the API call to OpenAI try { const openAIResponse = await fetch('https://api.openai.com/v1/chat/completions', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${openAIApiKey}`, }, body: JSON.stringify({ model: 'gpt-3.5-turbo', // Or your preferred model like gpt-4 messages: [{ role: 'user', content: prompt }], // For more consistent JSON output, consider using a model version that officially supports JSON mode if available // and set response_format: { type: "json_object" }, (check OpenAI documentation for model compatibility) }), }); if (!openAIResponse.ok) { const errorData = await openAIResponse.text(); console.error('OpenAI API Error details:', errorData); throw createError({ statusCode: openAIResponse.status, statusMessage: `Failed to get analysis from OpenAI: ${openAIResponse.statusText}` }); } const openAIData = await openAIResponse.json(); // Parse the content from the response - structure might vary slightly based on OpenAI model/API version // It's common for the JSON string to be in openAIData.choices[0].message.content if (openAIData.choices && openAIData.choices[0] && openAIData.choices[0].message && openAIData.choices[0].message.content) { const analysisResult = JSON.parse(openAIData.choices[0].message.content) as AsnafAnalysisResponse; return analysisResult; } else { console.error('OpenAI response structure not as expected:', openAIData); throw createError({ statusCode: 500, statusMessage: 'Unexpected response structure from OpenAI' }); } } catch (error) { console.error('Error during OpenAI API call or parsing:', error); // Avoid exposing detailed internal errors to the client if they are not createError objects if (typeof error === 'object' && error !== null && 'statusCode' in error) { // We can infer error has statusCode here, but to be super safe with TS: const e = error as { statusCode: number }; if (e.statusCode) throw e; } throw createError({ statusCode: 500, statusMessage: 'Internal server error during AI analysis' }); } // --- End of Actual OpenAI API Call --- // The simulated response below this line should be REMOVED once the actual OpenAI call is implemented and working. /* console.log('Received for analysis in server route:', body); await new Promise(resolve => setTimeout(resolve, 2000)); // Simulate API delay const totalIncomeNumeric = parseFloat(body.totalIncome); let percentage = '50%'; if (totalIncomeNumeric < 1000) percentage = '30%'; else if (totalIncomeNumeric < 2000) percentage = '65%'; else if (totalIncomeNumeric < 3000) percentage = '85%'; else percentage = '110%'; return { hadKifayahPercentage: percentage, kategoriAsnaf: 'Simulated - Miskin', kategoriKeluarga: 'Simulated - Miskin (50-100% HK)', cadanganKategori: 'Simulated - Miskin', statusKelayakan: 'Simulated - Layak (Miskin)', cadanganBantuan: [ { nama: 'Simulated - Bantuan Kewangan Bulanan', peratusan: '80%' }, { nama: 'Simulated - Bantuan Pendidikan Anak', peratusan: '65%' } ], ramalanJangkaMasaPulih: 'Simulated - 6 bulan', rumusan: 'Simulated - Pemohon memerlukan perhatian segera.' }; */ });