corrad-af-2024/server/api/analyze-asnaf.post.ts

124 lines
5.9 KiB
TypeScript

import { defineEventHandler, readBody } from 'h3';
// Define an interface for the expected request body (subset of AsnafProfile)
interface AsnafAnalysisRequest {
monthlyIncome: string;
otherIncome: string;
totalIncome: string;
occupation: string;
maritalStatus: string;
dependents: Array<any>; // Or a more specific type if you have one for dependents
// Add any other fields you deem necessary for OpenAI to analyze
}
interface AidSuggestion {
nama: string;
peratusan: string;
}
// Define an interface for the expected OpenAI response structure (and our API response)
interface AsnafAnalysisResponse {
hadKifayahPercentage: string;
kategoriAsnaf: string;
kategoriKeluarga: string;
cadanganKategori: string;
statusKelayakan: string;
cadanganBantuan: AidSuggestion[];
ramalanJangkaMasaPulih: string;
rumusan: string;
}
export default defineEventHandler(async (event): Promise<AsnafAnalysisResponse> => {
const body = await readBody<AsnafAnalysisRequest>(event);
// --- Placeholder for Actual OpenAI API Call ---
// In a real application, you would:
// 1. Retrieve your OpenAI API key securely (e.g., from environment variables)
const openAIApiKey = process.env.OPENAI_API_KEY;
if (!openAIApiKey) {
console.error('OpenAI API key not configured. Please set OPENAI_API_KEY in your .env file.');
throw createError({ statusCode: 500, statusMessage: 'OpenAI API key not configured' });
}
// 2. Construct the prompt for OpenAI using the data from `body`.
// IMPORTANT: Sanitize or carefully construct any data from `body` included in the prompt to prevent prompt injection.
const prompt = `You are an expert Zakat administrator. Based on the following applicant data: monthlyIncome: ${body.monthlyIncome}, totalIncome: ${body.totalIncome}, occupation: ${body.occupation}, maritalStatus: ${body.maritalStatus}, dependents: ${body.dependents.length}.
Return JSON with keys: hadKifayahPercentage, kategoriAsnaf, kategoriKeluarga, cadanganKategori, statusKelayakan, cadanganBantuan, ramalanJangkaMasaPulih, rumusan.
For 'cadanganBantuan', provide a JSON array of objects, where each object has a 'nama' (string, name of the aid) and 'peratusan' (string, e.g., '85%', representing suitability). Suggest 2-3 most relevant aid types.
Example for cadanganBantuan: [{"nama": "Bantuan Kewangan Bulanan", "peratusan": "90%"}, {"nama": "Bantuan Makanan Asas", "peratusan": "75%"}].
Full JSON Example: {"hadKifayahPercentage": "75%", ..., "cadanganBantuan": [{"nama": "Bantuan Kewangan Bulanan", "peratusan": "90%"}], ...}`;
// Adjust the prompt to be more detailed and specific to your needs and desired JSON output structure.
// 3. Make the API call to OpenAI
try {
const openAIResponse = await fetch('https://api.openai.com/v1/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${openAIApiKey}`,
},
body: JSON.stringify({
model: 'gpt-3.5-turbo', // Or your preferred model like gpt-4
messages: [{ role: 'user', content: prompt }],
// For more consistent JSON output, consider using a model version that officially supports JSON mode if available
// and set response_format: { type: "json_object" }, (check OpenAI documentation for model compatibility)
}),
});
if (!openAIResponse.ok) {
const errorData = await openAIResponse.text();
console.error('OpenAI API Error details:', errorData);
throw createError({ statusCode: openAIResponse.status, statusMessage: `Failed to get analysis from OpenAI: ${openAIResponse.statusText}` });
}
const openAIData = await openAIResponse.json();
// Parse the content from the response - structure might vary slightly based on OpenAI model/API version
// It's common for the JSON string to be in openAIData.choices[0].message.content
if (openAIData.choices && openAIData.choices[0] && openAIData.choices[0].message && openAIData.choices[0].message.content) {
const analysisResult = JSON.parse(openAIData.choices[0].message.content) as AsnafAnalysisResponse;
return analysisResult;
} else {
console.error('OpenAI response structure not as expected:', openAIData);
throw createError({ statusCode: 500, statusMessage: 'Unexpected response structure from OpenAI' });
}
} catch (error) {
console.error('Error during OpenAI API call or parsing:', error);
// Avoid exposing detailed internal errors to the client if they are not createError objects
if (typeof error === 'object' && error !== null && 'statusCode' in error) {
// We can infer error has statusCode here, but to be super safe with TS:
const e = error as { statusCode: number };
if (e.statusCode) throw e;
}
throw createError({ statusCode: 500, statusMessage: 'Internal server error during AI analysis' });
}
// --- End of Actual OpenAI API Call ---
// The simulated response below this line should be REMOVED once the actual OpenAI call is implemented and working.
/*
console.log('Received for analysis in server route:', body);
await new Promise(resolve => setTimeout(resolve, 2000)); // Simulate API delay
const totalIncomeNumeric = parseFloat(body.totalIncome);
let percentage = '50%';
if (totalIncomeNumeric < 1000) percentage = '30%';
else if (totalIncomeNumeric < 2000) percentage = '65%';
else if (totalIncomeNumeric < 3000) percentage = '85%';
else percentage = '110%';
return {
hadKifayahPercentage: percentage,
kategoriAsnaf: 'Simulated - Miskin',
kategoriKeluarga: 'Simulated - Miskin (50-100% HK)',
cadanganKategori: 'Simulated - Miskin',
statusKelayakan: 'Simulated - Layak (Miskin)',
cadanganBantuan: [
{ nama: 'Simulated - Bantuan Kewangan Bulanan', peratusan: '80%' },
{ nama: 'Simulated - Bantuan Pendidikan Anak', peratusan: '65%' }
],
ramalanJangkaMasaPulih: 'Simulated - 6 bulan',
rumusan: 'Simulated - Pemohon memerlukan perhatian segera.'
};
*/
});