4.4 KiB
4.4 KiB
Cross-Reference Tab Implementation Plan
Overview
Create a standalone tab that allows users to upload a document, process it, and find related documents in the existing database.
Current System Analysis
Backend (FastAPI)
- ✅
/search
endpoint exists - can find related documents - ✅
/documents
endpoint exists - can retrieve documents - ❌ No document upload endpoint
- ❌ No document processing for uploaded files
Frontend
- ✅ Tab system exists
- ✅ Basic cross-reference function exists (hardcoded)
- ❌ No file upload functionality
- ❌ No dedicated cross-reference tab
Implementation Plan
Phase 1: Backend API Extensions
New Endpoints Needed
-
POST /upload-document
- Accept file upload (PDF, DOC, TXT)
- Extract text content from uploaded file
- Return processed text and document metadata
- No database storage - temporary processing only
-
POST /find-cross-references
- Accept processed document text
- Use existing search functionality internally
- Return related documents with similarity scores
- Include cross-reference analysis
Leverage Existing APIs
- Use existing
/search
endpoint logic for finding related documents - Use existing
/documents
endpoint to fetch full related documents - Use existing database connection and document retrieval functions
Phase 2: Frontend Implementation
New Tab Structure
-
Upload Section
- File drop zone
- File type validation (PDF, DOC, DOCX, TXT)
- Upload progress indicator
- File preview/summary
-
Processing Section
- Processing status indicator
- Document analysis summary
- Key terms extraction display
-
Results Section
- Related documents list
- Similarity scores
- Cross-reference details
- Document preview capability
UI Components Needed
- File upload widget
- Progress bars
- Results grid/list
- Document preview modal
- Cross-reference visualization
Phase 3: Processing Logic
Document Processing Pipeline
-
File Upload & Validation
- Validate file type and size
- Extract text content using appropriate libraries
- Clean and normalize text
-
Content Analysis
- Extract key terms and phrases
- Identify legal concepts
- Generate search queries from content
-
Cross-Reference Matching
- Use existing search service (enhanced_rag_service or simple_search_service)
- Multiple search strategies:
- Full text similarity
- Key terms matching
- Legal concept matching
- Rank results by relevance
-
Results Processing
- Format cross-reference results
- Include similarity metrics
- Group by document type or relevance
Technical Approach
Backend Dependencies
# New libraries needed
- python-multipart # For file uploads
- PyPDF2 or pdfplumber # PDF text extraction
- python-docx # Word document processing
API Strategy
Recommendation: Create new endpoints because:
- Current
/search
expects a text query, not document content - Need specialized document processing logic
- Need different response format for cross-references
- Upload functionality is entirely new
Frontend Strategy
- Add new tab to existing tab system
- Use existing styling and components where possible
- Implement file upload using HTML5 File API
- Use existing API calling patterns
File Structure
New Backend Files
embedding/
├── document_processor.py # Handle file uploads and text extraction
├── cross_reference_service.py # Cross-reference logic
New Frontend Components
frontend/
├── js/
│ ├── cross-reference.js # Cross-reference tab logic
│ └── file-upload.js # File upload utilities
├── css/
│ └── cross-reference.css # Specific styling
API Endpoints Summary
POST /upload-document
- New endpoint neededPOST /find-cross-references
- New endpoint neededGET /documents
- Use existingGET /documents/{id}
- Use existing
Development Priority
- Backend document upload and processing
- Cross-reference matching logic
- Frontend tab and upload interface
- Results display and formatting
- Error handling and validation
Benefits of This Approach
- Leverages existing search infrastructure
- Maintains separation of concerns
- Scalable and maintainable
- Consistent with current API patterns
- No database changes needed